Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings.

نویسندگان

  • Ming Fan
  • Thipnakarin Boonfueng
  • Ying Xu
  • Lisa Axe
  • Trevor A Tyson
چکیده

Hydrous amorphous Al (HAO), Fe (HFO), and Mn (HMO) oxides are ubiquitous in the subsurface as both discrete particles and coatings and exhibit a high affinity for heavy metal contaminants. To assess risks associated with heavy metals, such as Pb, to the surrounding environment and manage remedial activities requires accurate mechanistic models with well-defined transport parameters that represent sorption processes. Experiments were conducted to evaluate Pb sorption to microporous Al, Fe, and Mn oxides, as well as to montmorillonite and HAO-coated montmorillonite. Intraparticle diffusion, a natural attenuating process, was observed to be the rate-limiting mechanism in the sorption process, where best-fit surface diffusivities ranged from 10(-18) to 10(-15) cm(2) s(-1). Specifically, diffusivities of Pb sorption to discrete aluminum oxide, aluminum oxide-coated montmorillonite, and montmorillonite indicated substrate surface characteristics influence metal mobility where diffusivity increased as affinity decreased. Furthermore, the diffusivity for aluminum oxide-coated montmorillonite was consistent with the concentrations of the individual minerals present and their associated particle size distributions. These results suggest that diffusivities for other coated systems can be predicted, and that oxide coatings and montmorillonite are effective sinks for heavy metal ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nickel and lead sequestration in manganese oxide-coated montmorillonite.

Amorphous hydrous manganese oxide (HMO) is an important mineral in soils and sediments influencing the mobility and bioavailability of metal contaminants. In this study, nickel and lead sorption to discrete HMO and HMO-coated montmorillonite was investigated mechanistically. The effect of pH and concentration revealed that when normalized to the mass of oxide present, the HMO-coated montmorillo...

متن کامل

Abstract No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic Modeling using X-ray Absorption Spectroscopy

No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic Modeling using X-ray Absorption Spectroscopy P. Trivedi, D. Sparks (U. Delaware) and K. Pandya (NRL) Beamline(s): X11A Introduction: Iron oxides are ubiquitous in soils and aquatic sediments as discrete particles or coatings on other mineral and organic materials. They play a significant role in controllin...

متن کامل

Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling.

Arsenic adsorption on amorphous aluminum and iron oxides was investigated as a function of solution pH, solution ionic strength, and redox state. In this study in situ Raman and Fourier transform infrared (FTIR) spectroscopic methods were combined with sorption techniques, electrophoretic mobility measurements, and surface complexation modeling to study the interaction of As(III) and As(V) with...

متن کامل

Abstract No. Conr0232 Planar Oxides as a Novel Approach to Understanding Metal Ion Sorption to Natural Oxide Surfaces: An EXAFS Investigation of Pb(II) Sorption to Gamma Alumina Surfaces

No. Conr0232 Planar Oxides as a Novel Approach to Understanding Metal Ion Sorption to Natural Oxide Surfaces: An EXAFS Investigation of Pb(II) Sorption to Gamma Alumina Surfaces M. Kelley (College of William & Mary/TJNAF), C. Chisholm-Brause (W&M), C. Conrad (W&M) Beamline(s): X11A Introduction: This work introduces planar oxides as a novel approach to understanding metal-ion interactions with ...

متن کامل

Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead.

This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 281 1  شماره 

صفحات  -

تاریخ انتشار 2005